Supplementation Approaches for Beef Cows

Common Question Areas

>Protein

✓ 20% vs. 40% cube

>Byproducts

Cake, Blocks, Liquids, or Tubs
Mineral

Nutrient Requirements

Microbes have requirements Meet them first

Cow has requirements

Often fulfilled when the protein requirements of the microbes are met

Lactation > Gestation > Dry

Forage intake relative to forage protein content

Adapted from Moore and Kunkle, 1995

Rule of Thumb

When the diet is < 7 % protein, protein supplementation is usually needed.

Protein

Energy

20% vs. 40% Cube

≻	48 cows on 49-day trial	Equal		
>	5.7% CP pasture (avg.)	protein / day		
	Feed price quote – July 1,2004	protoniny day		
	Sawyer et al., 2005	$ \longrightarrow $		

	No	20% Protein	38% Protein
	Supplement	(\$233/ton)	(\$273/ton)
Supplement, lb/d		4	2
\$/Ib CP		\$ 0.58	\$ 0.35
ADG, Ibs	0.19	0.46	0.47
Total Feed Cost		\$ 23.30	\$ 13.65
\$/lb/gain		\$ 1.02	\$ 0.57

Figure 2. Protein Supplement Decision Guide^{*}

Does each cow have all she can eat in the pasture?

Supplementation Frequency

How infrequently can a supplement be delivered?

Supplements >30% protein > once or twice a week Supplements <30% protein > daily or every other day

Does each cow have all she can eat in the pasture?

NO

- Forage supply is inadequate; energy deficient
- Reduce the forage needs of herd by lowering stocking rate and/or feeding supplement

What color is the forage?

GREEN Supplement energy with <20% CP • 0.4 to 0.8 % BW/day

- Protein is sufficient
- Energy is deficient
- Price \$/lb TDN

BROWN

Supplement with 20-28% CP

- 0.3 to 0.5 % BW/day
- Energy is deficient
- Protein is likely <7% and limiting forage digestion
- consider \$/Ib TDN and \$/Ib CP

If forage shortage is severe, supplement with <20% CP

- 0.4 to 0.8% BW/day
- Price \$/lb TDN

If you chose to feed energy...

Best to energy <u>supplement</u> with inexpensive sources of highly digestible fiber.

- Wheat middlings
- Corn gluten feed
- Soybean hulls
- Fiber-based cubes
- > Hay

Grain Supplementation Influence on Forage Intake

As grain feeding increases, voluntary hay intake decreases

Grain Supplementation Influence on Energy Intake

Feeding 4 lbs or more of corn did not increase total energy intake

Soybean Hull Supplementation Influence on Forage Intake

As soybean hull intake increased, voluntary forage intake changed little

Soybean Hull Supplementation Influence on Energy Intake

As soybean hull intake increased, energy intake increased

Energy Feeding - Rules of Thumb

Feeding 3 lbs/day or a high starch feed causes a small decrease in forage intake, but should increase energy intake.

>

- When feeding a high starch feed above 3 lbs/day, every additional 1.0 lb feed reduced forage consumption by 1.5 - 2.0 lbs.
- Feeding up to 7 lbs of a highly digestible fiber source to grazing cattle will generally have minimal impact on forage intake.
 - Generally 1 lb of hay replaces 1 lb of grazed forage.

Selecting the Best Feedstuff for the Situation

Identify what is needed to achieve goals.
"Decision Guide" may help

Evaluate potential feedstuffs according to cost/unit nutrient

Make a cost comparison table

Example cost calculation:

> 20% CP supplement

\$233/ton

2000 lb X 20% CP = 400 lb CP \$233/ton ÷ 400 lb CP = \$.58 / lb CP

Cost / Unit Nutrient Example

38 % CP Cube

- > \$405/ton
- 2000 lbs * 0.38 = 760 lbs CP/ton
- \$405/ton ÷ 760 lb/ton = \$0.53/lb CP

20 % CP Cube

- > \$370/ton
- 2000 lbs * 0.20 = 400 lbs CP/ton
- \$370/ton ÷ 400 lb/ton = \$0.94/lb CP

18% Alfalfa Hay

- > \$180/ton
- 2000 lbs * 0.18 = 360 lbs CP/ton
- \$180/ton ÷ 360 lb/ton = \$0.50/lb CP

30% CP Tub

- > \$850/ton
- 2000 lbs * 0.30 = 600 lbs CP/ton
- \$405/ton ÷ 600 lb/ton = \$1.42/lb CP

Cost 77% more than 38% Cube

Cost 6% less than 38% Cube

Cost 267% more than 38% Cube

Mineral Supplementation Approach

Know what your forage provides! Consider water antagonists (S, Fe) Deliver mineral via: > Mineral mix

Protein supplement

Example: Cake + Mineral

Cake fed at 2 lb/hd/day

- @ 1% Phosphorous
- @ 2% Potassium
- @ 50 ppm Copper
- @ 70 ppm Zinc

Mineral fed at 2 oz/hd/day

- @ 8% Phosphorous
- @ 2% Potassium
- @ 2000 ppm Copper
- @ 2000 ppm Zinc

- = 40% of lact. P req.
- = 25% of lact. K req.
- = 45% of Cu req.
- = 21% of Zn req.
- = 18% of lact. P req.
- = 2% of lact. P req.
- = 112% of Cu req.
- = 38% of Zn req.

Total:	Phosphorous	= 58% of lact. P req.
	Potassium	= 27% of lact. P req.
Section Allian	Copper	= 157% of Cu req.
	Zinc	= 59% of Zn req.

2, 3, or 4 oz Mineral Intake?

Cost/head 2 oz < 3 oz < 4 oz

Reason for 3 or 4 oz intake: Meet more of macromineral requirement ✓ Especially P and K

Is it cost effective to meet 100% of requirement?

Total: Phosphorous Potassium Copper Zinc 78% of lact. P req.
58% of lact. P req.
253% of Cu req.
122% of Zn req.

Phosphorous?

Currently 1% Phosphorous

_

about \$50/ton in mineral price

Loose versus Blocks

Wind loss?

Intake variation?

Nutrition Summary

- Manage stocking rates such that energy supplementation needs are minimal
- Supplement protein (30-40% CP) when range forage is dry and brown
- Supplement energy when forage supply is limited
- Deliver protein supplement once or twice a week

Nutrition Summary

Deliver energy supplement every day or every other day

Feed supplement after 11:00 AM

Provide mineral all year long

Expect weight loss during winter months, but manage for optimal BCS at calving

Questions

Clay P. Mathis Extension Livestock Specialist (575)646-8022 <u>clmathis@nmsu.edu</u>